Marcinkiewicz integrals with variable kernels on Hardy and weak Hardy spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces

Let [Formula: see text] satisfy that [Formula: see text], for any given [Formula: see text], is an Orlicz function and [Formula: see text] is a Muckenhoupt [Formula: see text] weight uniformly in [Formula: see text]. The Musielak-Orlicz Hardy space [Formula: see text] is defined to be the set of all tempered distributions such that their grand maximal functions belong to the Musielak-Orlicz spa...

متن کامل

Commutators of integral operators with variable kernels on Hardy spaces

Abstract. Let TΩ,α (0 ≤ α < n) be the singular and fractional integrals with variable kernel Ω(x,z), and [b,TΩ,α ] be the commutator generated by TΩ,α and a Lipschitz function b. In this paper, the authors study the boundedness of [b,TΩ,α ] on the Hardy spaces, under some assumptions such as the Lr-Dini condition. Similar results and the weak type estimates at the end-point cases are also given...

متن کامل

Weak Hardy Spaces

We provide a careful treatment of the weak Hardy spaces Hp,∞(Rn) for all indices 0 < p < ∞. The study of these spaces presents differences from the study of the Hardy-Lorentz spaces H(R) for q <∞, due to the lack of a good dense subspace of them. We obtain several properties of weak Hardy spaces and we discuss a new square function characterization for them, obtained by He [16].

متن کامل

Boundedness for Multilinear Marcinkiewicz Operators on Certain Hardy Spaces

The boundedness for the multilinear Marcinkiewicz operators on certain Hardy and Herz-Hardy spaces are obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2010

ISSN: 0972-6802

DOI: 10.1155/2010/271905